
Introduction	
 to	
 Computer	
 Science	

	

This	
 work	
 is	
 licensed	
 under	
 a	
 Creative	
 Commons	
 Attribution-­‐
NonCommercial-­‐ShareAlike	
 4.0	
 International	
 License	
 	

Project 2: Platform Game
Students	
 will	
 implement	
 a	
 side-­‐scrolling	
 platform	
 game	
 (a	
 la	
 Super	
 Mario	
 Bros.)	
 in	
 Snap!.	

Overview
Platform	
 games	
 are	
 among	
 the	
 most	
 widely	
 recognized	
 types	
 of	
 video	
 games.	
 Composing	
 about	
 one	
 third	
 of	

all	
 console	
 games	
 at	
 the	
 peak	
 of	
 their	
 popularity,	
 platform	
 games	
 are	
 characterized	
 by	
 their	
 relative	
 simplicity	

and	
 by	
 the	
 common	
 gameplay	
 element	
 of	
 jumping	
 across	
 suspended	
 platforms	
 (hence	
 the	
 name)	
 to	
 avoid	

falling	
 into	
 a	
 hazard.	
 Platform	
 games	
 also	
 typically	
 include	
 enemy	
 characters,	
 items	
 that	
 grant	
 the	
 hero	
 special	

abilities	
 ("power-­‐ups"),	
 and	
 a"checkpoint"	
 system	
 that	
 allows	
 the	
 player	
 to	
 restart	
 from	
 partway	
 through	
 a	

game	
 or	
 level	
 when	
 he	
 or	
 she	
 dies.	

Details

Behavior

i. Gameplay	
 	

In	
 a	
 platform	
 game,	
 the	
 player	
 controls	
 a	
 hero	
 who	
 moves	
 throughout	
 the	
 world	
 attempting	
 to	

reach	
 an	
 endpoint	
 and/or	
 accomplish	
 a	
 goal.	
 Along	
 the	
 way,	
 the	
 hero	
 encounters	
 hazards	
 such	

as	
 pits	
 (into	
 which	
 he	
 or	
 she	
 can	
 fall)	
 and	
 enemies	
 (which	
 can	
 either	
 move	
 or	
 be	
 stationary).	
 The	

hero	
 has	
 a	
 finite	
 number	
 of	
 chances	
 (known	
 as	
 "lives")	
 to	
 achieve	
 his	
 or	
 her	
 objective.	
 Each	
 time	

the	
 hero	
 succumbs	
 to	
 a	
 hazard,	
 a	
 life	
 is	
 lost	
 and	
 the	
 player	
 must	
 try	
 again.	

ii. The	
 Hero	
 	

The	
 hero	
 moves	
 around	
 the	
 world	
 under	
 the	
 player's	
 control.	
 The	
 hero	
 can	
 perform	
 three	
 basic	

actions:	
 move	
 left	
 and	
 right	
 (controlled	
 by	
 the	
 arrow	
 keys)	
 and	
 jump	
 (by	
 pressing	
 the	
 space	

bar).	
 As	
 the	
 hero	
 moves	
 throughout	
 the	
 world,	
 he	
 or	
 she	
 is	
 subject	
 to	
 gravity.	
 This	
 means	
 that	

when	
 the	
 hero	
 jumps	
 or	
 moves	
 off	
 the	
 edge	
 of	
 a	
 platform,	
 he	
 or	
 she	
 should	
 return	
 quickly	
 to	

the	
 ground	
 (or	
 another	
 platform).	
 The	
 hero	
 should	
 never	
 fall	
 through	
 a	
 platform	
 or	
 the	
 ground.	

iii. Screens	
 	

Your	
 platform	
 game	
 will	
 be	
 a	
 side-­‐scrolling	
 game.	
 In	
 this	
 style	
 of	
 game,	
 the	
 scenery	
 changes	
 as	

the	
 player	
 moves	
 horizontally	
 across	
 the	
 screen.	
 While	
 many	
 modern	
 side-­‐scrollers	
 (including	

Super	
 Mario	
 Bros.)	
 scroll	
 smoothly	
 as	
 the	
 player	
 moves,	
 our	
 game	
 will	
 use	
 a	
 simpler	
 system	
 and	

consist	
 of	
 screens.	
 Each	
 screen	
 represents	
 one	
 section	
 of	
 the	
 overall	
 world	
 in	
 which	
 the	
 game	

takes	
 place.	
 The	
 hero	
 should	
 be	
 able	
 to	
 move	
 freely	
 around	
 each	
 screen,	
 but	
 when	
 the	
 hero	

reaches	
 the	
 far	
 right	
 edge	
 of	
 a	
 screen,	
 the	
 next	
 screen	
 should	
 appear	
 and	
 the	
 hero	
 should	
 be	

placed	
 on	
 the	
 far	
 left	
 edge	
 at	
 the	
 same	
 height.	
 Your	
 game	
 must	
 include	
 at	
 least	
 three	
 distinct	

screens,	
 and	
 each	
 screen	
 must	
 include	
 at	
 least	
 one	
 hazard.	

iv. Hazards	
 and	
 Lives	
 	

Your	
 program	
 should	
 include	
 at	
 least	
 one	
 of	
 each	
 of	
 the	
 following	
 types	
 of	
 hazards:	

*	
 A	
 falling	
 hazard	
 (a	
 hole,	
 pit,	
 or	
 other	
 opening)	
 into	
 which	
 the	
 hero	
 can	
 fall	
 if	
 he	
 or	
 she	
 does	
 no
t	
 jump	
 to	
 avoid	
 it.	
 	
 Falling	
 to	
 the	
 bottom	
 of	
 this	
 hazard	
 causes	
 the	
 hero	
 to	
 die.	
 *	
 A	
 stationary	
 en

Introduction	
 to	
 Computer	
 Science	

	

This	
 work	
 is	
 licensed	
 under	
 a	
 Creative	
 Commons	
 Attribution-­‐
NonCommercial-­‐ShareAlike	
 4.0	
 International	
 License	
 	

emy	
 that	
 does	
 not	
 move,	
 but	
 that	
 causes	
 the	
 hero	
 to	
 die	
 if	
 it	
 is	
 touched.	
 *	
 A	
 moving	
 enemy	
 that	

also	
 causes	
 the	
 hero	
 to	
 die	
 if	
 it	
 is	
 touched,	
 but	
 that	
 moves	
 in	
 some	
 way.	
 	

Note	
 that	
 an	
 enemy	
 can	
 be	
 either	
 a	
 character	
 (like	
 Goombas	
 in	
 Super	
 Mario	
 Bros.)	
 or	
 an	

environmental	
 hazard	
 (such	
 as	
 spikes).	
 When	
 the	
 hero	
 dies	
 by	
 either	
 falling	
 down	
 a	
 falling	

hazard	
 or	
 touching	
 an	
 enemy,	
 he	
 or	
 she	
 loses	
 a	
 life.	
 If	
 the	
 hero	
 has	
 lives	
 remaining,	
 one	
 should	

be	
 lost,	
 used	
 power-­‐ups	
 and	
 defeated	
 enemies	
 should	
 be	
 reinstated,	
 and	
 the	
 hero	
 should	
 be	

placed	
 back	
 at	
 the	
 left	
 edge	
 of	
 the	
 current	
 screen.	
 Otherwise,	
 the	
 game	
 is	
 over	
 and	
 a	
 suitable	

message	
 should	
 be	
 displayed.	

v. Power-­‐Ups	
 	

While	
 moving	
 through	
 the	
 world,	
 the	
 hero	
 may	
 obtain	
 power-­‐ups	
 that	
 grant	
 him	
 or	
 her	
 special	

abilities.	
 Examples	
 can	
 include	
 increased	
 jumping	
 power,	
 invulnerability,	
 or	
 the	
 ability	
 to	

destroy	
 enemies.	
 These	
 abilities	
 should	
 be	
 temporary,	
 and	
 there	
 should	
 be	
 some	
 visual	

indication	
 when	
 the	
 hero	
 has	
 access	
 to	
 them.	
 A	
 power-­‐up	
 should	
 appear	
 as	
 an	
 item	
 (sprite)	
 in	

the	
 world.	
 The	
 hero	
 will	
 obtain	
 the	
 abilities	
 by	
 touching	
 the	
 power-­‐up	
 sprite,	
 at	
 which	
 point	
 the	

power-­‐up	
 should	
 disappear.	
 Your	
 game	
 should	
 include	
 at	
 least	
 two	
 distinct	
 power-­‐ups,	
 at	
 least	

one	
 of	
 which	
 is	
 required	
 for	
 the	
 hero	
 to	
 win	
 the	
 game.	
 In	
 addition,	
 at	
 least	
 one	
 of	
 your	
 power-­‐
ups	
 should	
 be	
 hidden,	
 meaning	
 that	
 the	
 player	
 must	
 take	
 some	
 action	
 before	
 he	
 or	
 she	
 can	

obtain	
 its	
 abilities.	
 For	
 example,	
 in	
 Super	
 Mario	
 Bros.,	
 Mario	
 must	
 jump	
 into	
 a	
 special	
 block	
 to	

make	
 many	
 power-­‐ups	
 appear.	
 A	
 hidden	
 power-­‐up	
 should	
 not	
 be	
 visible	
 until	
 it	
 is	
 triggered	
 by	

the	
 hero,	
 and	
 the	
 hero	
 should	
 not	
 be	
 able	
 to	
 obtain	
 the	
 abilities	
 until	
 the	
 power-­‐up	
 is	
 revealed.	

vi. Winning	
 the	
 Game	
 	

There	
 should	
 be	
 some	
 clear	
 end	
 goal	
 that,	
 when	
 achieved	
 by	
 the	
 hero,	
 ends	
 the	
 game	
 in	

victory.	
 This	
 victory	
 condition	
 should	
 be	
 obvious	
 even	
 to	
 a	
 new	
 player.	
 You	
 need	
 not	
 (and	

probably	
 should	
 not)	
 provide	
 written	
 instructions	
 to	
 the	
 player	
 about	
 this	
 condition—use	
 easily	

identifiable	
 visual	
 indicators	
 such	
 as	
 flags,	
 doors,	
 etc.	

vii. Reset	
 Button	
 	

At	
 any	
 point	
 during	
 gameplay,	
 if	
 the	
 player	
 presses	
 the	
 'z'	
 key,	
 the	
 game	
 should	
 reset	
 to	
 its	

initial	
 state.	
 The	
 game	
 state	
 after	
 pressing	
 the	
 'z'	
 key	
 should	
 be	
 indistinguishable	
 from	
 when	
 the	

game	
 first	
 begins.	
 This	
 means,	
 among	
 other	
 things,	
 that:	

*	
 the	
 hero	
 should	
 return	
 to	
 the	
 left	
 edge	
 of	
 the	
 first	
 screen,	
 lose	
 all	
 special	
 abilities,	
 and	
 be	
 	

given	
 back	
 all	
 his	
 or	
 her	
 lives	
 	

*	
 any	
 destroyed	
 enemies	
 should	
 be	
 reinstated	
 and	
 replaced	
 in	
 their	
 original	
 positions	
 	

*	
 obtained	
 power-­‐ups	
 should	
 become	
 available	
 and	
 revealed	
 power-­‐ups	
 should	
 be	
 hidden	
 	
 	

Implementation Detai ls

1. Design	
 and	
 Creativity	
 	

Your	
 program	
 should	
 be	
 well-­‐designed	
 and	
 have	
 a	
 unifying	
 theme,	
 characteristic,	
 or	
 style.	
 This	
 can	
 be	
 a	

particular	
 style	
 of	
 artwork,	
 common	
 colors,	
 and/or	
 related	
 types	
 of	
 characters.	
 In	
 addition,	
 you	
 should	

Introduction	
 to	
 Computer	
 Science	

	

This	
 work	
 is	
 licensed	
 under	
 a	
 Creative	
 Commons	
 Attribution-­‐
NonCommercial-­‐ShareAlike	
 4.0	
 International	
 License	
 	

show	
 some	
 effort	
 and	
 creativity	
 in	
 your	
 design.	
 Do	
 not	
 simply	
 recreate	
 an	
 existing	
 game	
 or	
 use	
 only	

ideas	
 put	
 forth	
 in	
 this	
 spec.	
 Come	
 up	
 with	
 some	
 original	
 concepts	
 for	
 characters,	
 backgrounds,	
 power-­‐
ups,	
 etc.	
 and	
 utilize	
 them	
 in	
 your	
 game.	
 If	
 you	
 make	
 us	
 say	
 "Wow!"	
 it	
 may	
 even	
 be	
 worth	
 some	
 extra	

credit.	
 Using	
 copyrighted	
 assets	
 (including	
 characters	
 or	
 artwork	
 from	
 an	
 existing	
 game),	
 even	
 with	

modification,	
 is	
 not	
 allowed.	

2. Documentation	
 	

In	
 addition	
 to	
 functioning	
 well,	
 your	
 program	
 must	
 be	
 well-­‐documented	
 and	
 readable.	
 This	
 includes,	

but	
 is	
 not	
 limited	
 to,	
 things	
 such	
 as:	

o organizing	
 your	
 scripts	
 so	
 that	
 they	
 can	
 be	
 read	
 and	
 comprehended	
 easily	

o giving	
 your	
 sprites	
 meaningful	
 names	

o naming	
 and	
 using	
 your	
 variables	
 well	

o including	
 comments	
 to	
 describe	
 the	
 structure	
 of	
 your	
 program	
 and	
 any	
 particularly	
 complex	
 or	

unintuitive	
 pieces	
 of	
 code	

3. Required	
 Snap!	
 Elements	
 	

Your	
 program	
 must	
 include,	
 at	
 a	
 minimum,	
 the	
 following	
 Snap!	
 code	
 elements:	

o At	
 least	
 two	
 variables	

o At	
 least	
 one	
 conditional	
 (if	
 or	
 if-­‐else)	
 statement	

o At	
 least	
 two	
 messages,	
 one	
 of	
 which	
 must	
 be	
 received	
 and	
 responded	
 to	
 by	
 multiple	
 sprites	

4. Peer	
 Feedback	
 	

As	
 part	
 of	
 the	
 software	
 development	
 experience	
 on	
 this	
 project,	
 you	
 will	
 participate	
 in	
 a	
 peer	
 review	

with	
 one	
 or	
 more	
 of	
 your	
 classmates.	
 Near	
 the	
 end	
 of	
 the	
 project,	
 you	
 will	
 play	
 another	
 student's	
 game	

and	
 provide	
 him	
 or	
 her	
 with	
 notes	
 and	
 comments.	
 Your	
 partner(s)	
 will	
 also	
 play	
 your	
 game	
 and	
 offer	

the	
 same	
 feedback.	
 You	
 should	
 offer	
 suggestions	
 for	
 features	
 that	
 could	
 be	
 improved	
 or	
 changed	
 as	

well	
 as	
 look	
 for	
 bugs	
 in	
 the	
 program	
 you	
 are	
 reviewing.	
 Keep	
 your	
 comments	
 constructive	
 and	

professional!	
 Don't	
 just	
 point	
 out	
 things	
 you	
 don't	
 like—explain	
 your	
 thinking	
 and	
 propose	
 solutions.	

Also,	
 restrict	
 your	
 comments	
 to	
 things	
 that	
 can	
 be	
 reasonably	
 addressed.	
 Do	
 not	
 tell	
 your	
 partner	
 that	

he	
 or	
 she	
 made	
 a	
 poor	
 choice	
 of	
 theme	
 and	
 should	
 start	
 over,	
 for	
 example.	
 After	
 receiving	
 your	
 peer	

feedback,	
 you	
 should	
 consider	
 the	
 comments	
 carefully	
 and	
 respond.	
 You	
 will	
 be	
 expected	
 to	
 turn	
 in	
 the	

feedback	
 provided	
 to	
 you	
 and	
 identify	
 ways	
 in	
 which	
 you	
 modified	
 your	
 game	
 in	
 response	
 to	
 the	

feedback	
 you	
 received.	

5. Required	
 Checkpoints	

i. Monday,	
 October	
 27:	
 Screens	
 should	
 be	
 designed;	
 the	
 hero	
 should	
 be	
 able	
 to	
 move	
 and	
 jump;	

gravity	
 should	
 work;	
 reset	
 button	
 should	
 be	
 functional	

ii. Monday,	
 November	
 3:	
 Hazards	
 and	
 enemies	
 should	
 be	
 present;	
 death	
 should	
 work	
 properly.	

iii. Monday,	
 November	
 10	
 (final	
 due	
 date):	
 Lives,	
 power-­‐ups,	
 and	
 victory	
 should	
 be	
 implemented;	

all	
 other	
 required	
 program	
 components	
 must	
 work	

	

Introduction	
 to	
 Computer	
 Science	

	

This	
 work	
 is	
 licensed	
 under	
 a	
 Creative	
 Commons	
 Attribution-­‐
NonCommercial-­‐ShareAlike	
 4.0	
 International	
 License	
 	

Grading Scheme/Rubric
Functional	
 Correctness	
 (Behavior)	
 Value	

Left	
 and	
 right	
 arrows	
 and	
 space	
 bar	
 control	
 hero's	
 movement,	
 and	
 hero	
 does	
 not	
 move	
 through	
 walls	
 2	
 points	

Hero	
 is	
 subject	
 to	
 gravity,	
 and	
 does	
 not	
 fall	
 through	
 platforms	
 2	
 points	

Game	
 consists	
 of	
 at	
 least	
 three	
 screens	
 1	
 point	

Game	
 contains	
 at	
 least:	

• One	
 falling	
 hazard	
 (pit)	

• One	
 stationary	
 enemy	

• One	
 moving	
 enemy	

3	
 points	

Player	
 loses	
 a	
 life	
 when	
 falling	
 down	
 the	
 falling	
 hazard	
 or	
 touching	
 an	
 enemy,	
 and	
 hero	
 restarts	
 on	

current	
 screen	
 after	
 death.	

2	
 points	

Player	
 starts	
 with	
 three	
 lives,	
 and	
 game	
 ends	
 when	
 player	
 is	
 out	
 of	
 lives	
 2	
 points	

Game	
 contains	
 at	
 least	
 two	
 power-­‐ups,	
 at	
 least	
 one	
 of	
 which	
 is	
 hidden	
 and	
 at	
 least	
 one	
 of	
 which	
 is	

necessary	
 to	
 win	
 the	
 game	

3	
 points	

Hero	
 has	
 a	
 clear	
 goal	
 to	
 win	
 the	
 game	
 1	
 point	

Gameplay	
 is	
 clear	
 and	
 intuitive,	
 even	
 to	
 a	
 brand	
 new	
 player	
 1	
 point	

Game	
 resets	
 when	
 the	
 'z'	
 key	
 is	
 pressed	
 2	
 points	

Total	
 19	
 points	

Technical	
 Correctness	
 (Implementation)	
 Value	

Program	
 is	
 well-­‐designed	
 visually	
 and	
 has	
 a	
 consistent	
 theme	
 2	
 point	

Program	
 shows	
 good	
 creativity	
 and	
 effort	
 2	
 points	

Program	
 is	
 well-­‐documented	
 and	
 exhibits	
 good	
 style	
 2	
 points	

Program	
 includes	
 at	
 least	
 two	
 variables	
 2	
 points	

Program	
 includes	
 at	
 least	
 two	
 messages,	
 at	
 least	
 one	
 of	
 which	
 is	
 received	
 and	
 reacted	
 to	
 by	
 multiple	

sprites	

2	
 points	

Program	
 includes	
 at	
 least	
 one	
 conditional	
 statement	
 1	
 point	

Provide	
 valuable	
 playtest	
 feedback	
 to	
 at	
 least	
 two	
 other	
 students	
 2	
 points	

Obtain	
 and	
 respond	
 to	
 playtest	
 feedback	
 from	
 at	
 least	
 two	
 other	
 students	
 2	
 points	

Checkpoint	
 1	
 2	
 points	

Checkpoint	
 2	
 4	
 points	

Total	
 21	
 points	

Total	
 40	
 points	

Introduction	
 to	
 Computer	
 Science	

	

This	
 work	
 is	
 licensed	
 under	
 a	
 Creative	
 Commons	
 Attribution-­‐
NonCommercial-­‐ShareAlike	
 4.0	
 International	
 License	
 	

	

